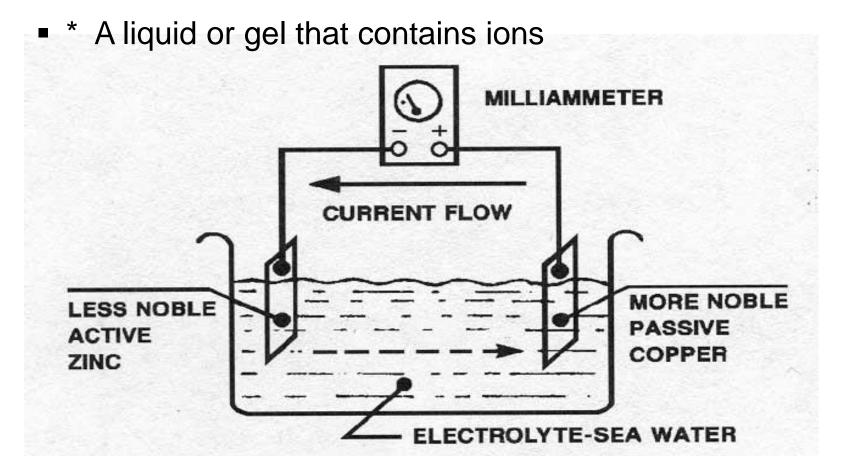


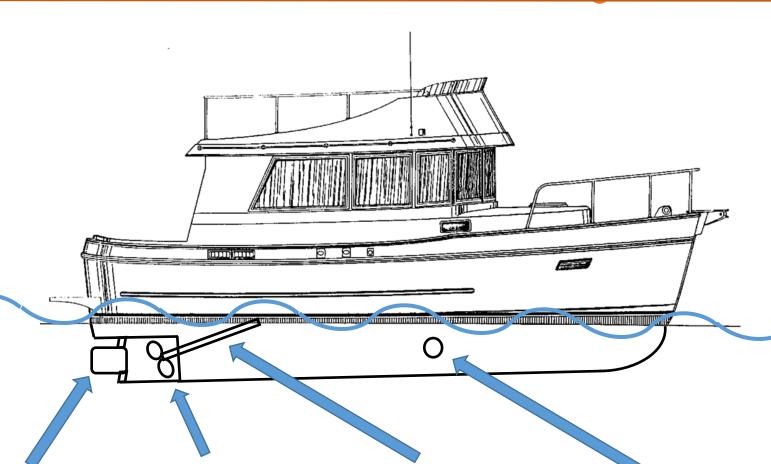
QUARTERMASTER YACHT CLUB – Tech Talk Introduction

WELCOME to QYC Tech Talks!

- A Tech Talk is...
 - An <u>exchange</u> of information, ideas and experience
 - More dialogue than "teaching"
 - A little structure
- We encourage...
 - Listening, learning & contributing
 - Discussion and debate
 - Questions
- Our next Tech Talk is:
 - During the 2018 2019 Season

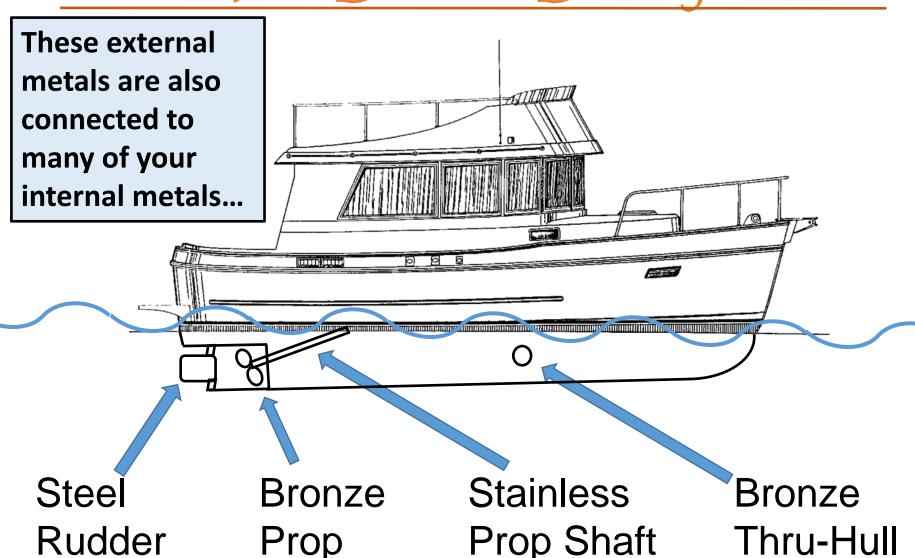
Corrosion & Electrical Safety Overview


- What makes a battery / Anodic table
- Types of marine corrosion
 - Galvanic
 - Stray Current
 - Crevice
- Marine wiring basics
- Marine electrical safety
 - You and your boat
 - Electro-shock drowning


What Makes a Battery?

- Two different metals
- Electrolyte* solution

Your Boat is a Battery!

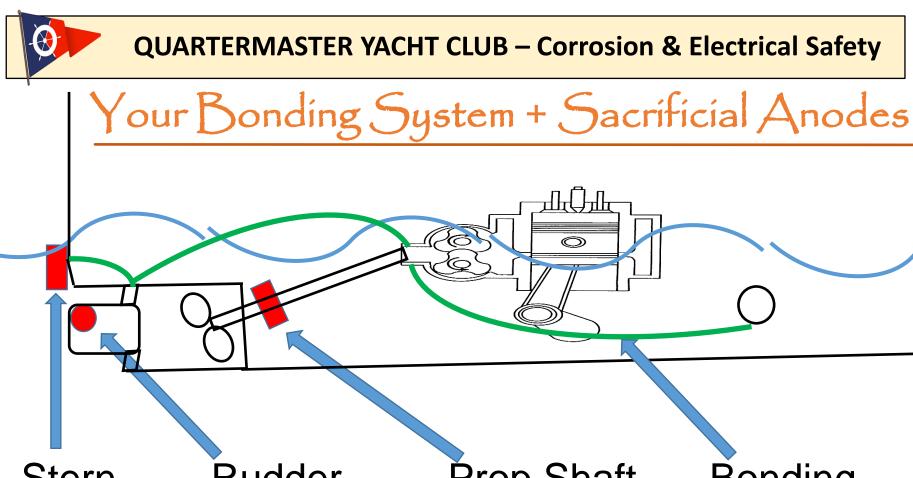


Steel Rudder

Bronze Prop Stainless Prop Shaft Bronze Thru-Hull

Your Boat is a Battery!

Battery Demo


QUARTERMASTER YACHT CLUB – Anodic Index Table

Metal	Index (V)	Allowable voltage differences:	
Most Cathodic			
Gold, solid and plated, Gold-platinum alloy	-0.00	Harsh Environments - Up to 0.15V between metals	
Rhodium plated on silver-plated copper	-0.05		
Silver, solid or plated; monel metal. High nickel-copper alloys	-0.15		
Nickel, solid or plated, titanium an s alloys, Monel	-0.30		
<u>Copper</u> , solid or plated; low brasses or bronzes; silver solder; German silvery high copper-nickel alloys; nickel-chromium alloys	-0.35	Indoor Environments - Up to 0.25V between metals	
Brass and bronzes	-0.40		
High brasses and bronzes	-0.45	Controlled Environments (tomp /	
18% chromium type corrosion-resistant steels	-0.50	Controlled Environments (temp /	
<u>Chromium</u> plated; tin plated; 12% chromium type corrosion-resistant <u>steels</u>	-0.60	humidity)	
<u>Tin</u> -plate; tin-lead <u>solder</u>	-0.65	- Up to 0.50V between metals	
<u>Lead</u> , solid or plated; high lead alloys	-0.70		
2000 series wrought aluminum	-0.75	Bronze to Stainless: < 0.20	
<u>Iron</u> , wrought, gray or <u>malleable</u> , plain <u>carbon</u> and low alloy steels	-0.85		
Aluminum, wrought alloys other than 2000 series aluminum, cast alloys of the silicon type	-0.90	Bronze to Aluminum: < 0.55	
Aluminum, cast alloys other than silicon type, <u>cadmium</u> , plated and chromate	-0.95	Bronze to Steel: < 0.80	
Hot-dip- <u>zinc</u> plate; <u>galvanized</u> steel	-1.20		
Zinc, wrought; zinc-base die-casting alloys; zinc plated	-1.25	Aluminum to Stainless: < 0.45	
Magnesium & magnesium-base alloys, cast or wrought	-1.75		
<u>Beryllium</u>	-1.85	Aluminum to Steel: < 0.70	
Most Anodic		Aluminum to Steel: < 0.70	

Your Boat as a Battery = Galvanic Corrosion

- Cause: Different metals in electrolyte
- Attributes: Relatively slow
- ❖ To avoid: You can't
 - You can introduce sacrificial anodes
- Cautionary notes:
 - Metal based lubricants
 - Metal based bottom paints

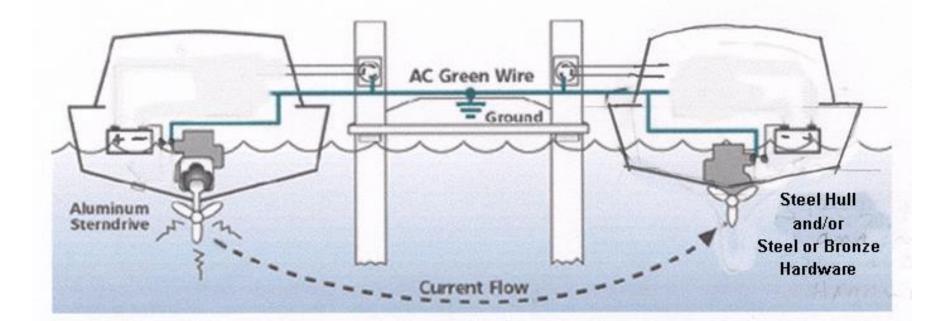
Stern Anode Rudder Anode Prop Shaft Anode

Bonding Wire*

The Bonding System connects all underwater metal components to a sacrificial anode – and to your on-board electrical ground system

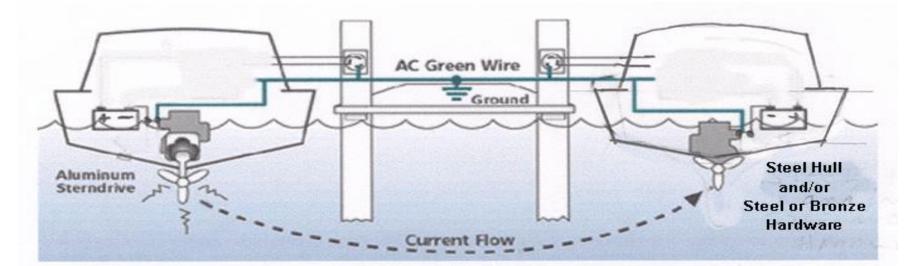
^{*} Bonding wire resistance recommended less than one ohm

Other Bonding System Considerations

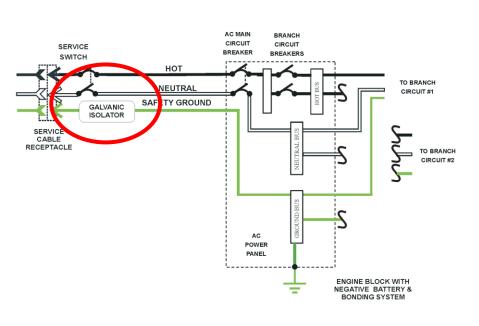

Bonding to avoid static electricity buildup on fuel tanks, fuel filler hoses, fuel inlets, etc

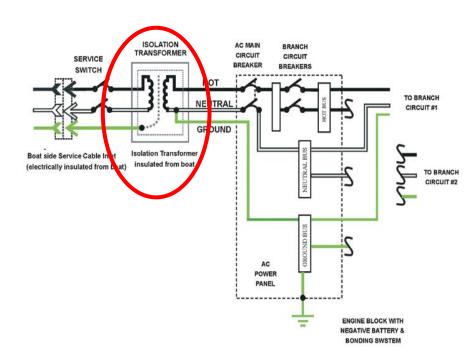
- Calder, and others, suggest not bonding any "electrically isolated metal fittings"
 - To assure through hulls and other immersed metals are not electrically bonded to a lightning protection system, and
 - To avoid the multi-boat stray current corrosion problem cited below

Galvanic Corrosion between Boats


- Cause: Different metals in electrolyte
- Attributes: Relatively slow
- ❖ To avoid: Galvanic Isolator / Isolation Transformer
 - Stops DC current in your AC grounding wire

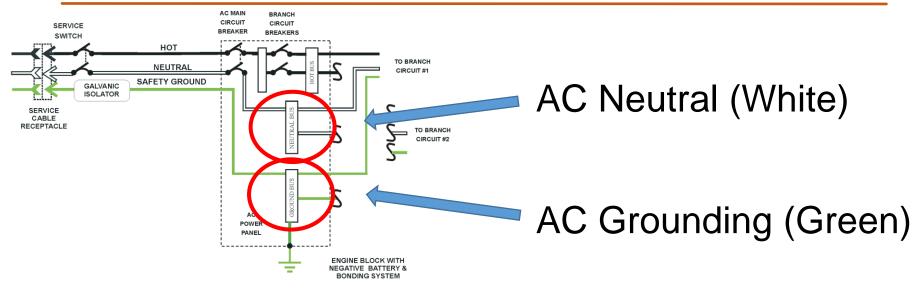
Galvanic Corrosion between Boats


- Cut the AC grounding wire?
 - Stops galvanic corrosion current flow
 - ❖ Not compliant with ABYC standards
 - Only if install AC ground fault circuit interrupters to protect EVERY AC device on the boat



Galvanic Corrosion between Boats

Galvanic Isolator or Isolation Transformer – ABYC approved way to stop multi-boat galvanic corrosion



Galvanic Isolator

Isolation Transformer

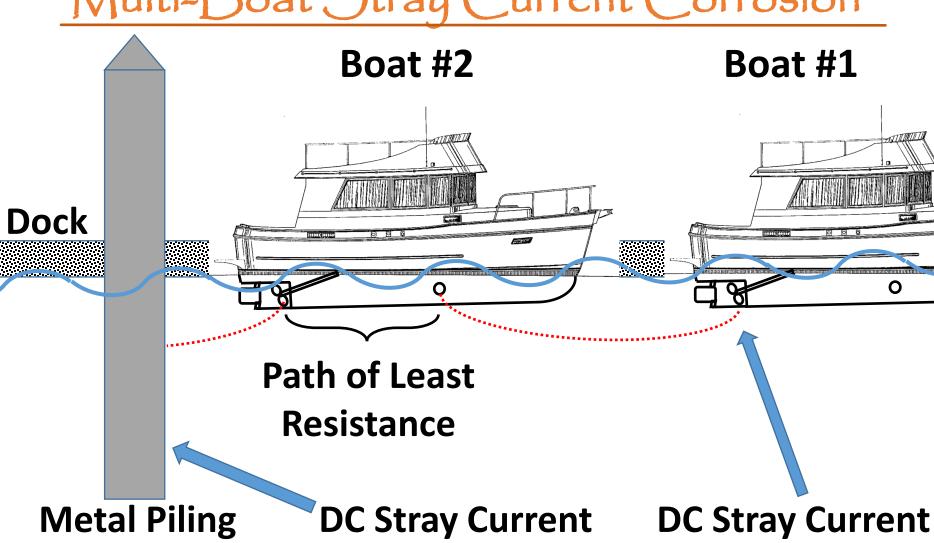
Boat Wiring vs Home Wiring

Boat: Separated <u>Home</u>: Connected

<u>ABYC</u>: Neutral and Grounding wire never connected except at the source of power

- On shore, at an Isolation Transformer or at an Inverter
- Non-marine AC appliances AC Grounding wire must not be connected to AC Neutral wire – Stray AC current source

Stray Current Corrosion


- Cause: When metal with an electrical current flowing into it is immersed in water that is grounded – like any lake, river or ocean.
- Attributes: Relatively slow (AC) to **very** fast (DC)
- To detect: Regular maintenance testing of your AC and DC electrical systems.
- To avoid: Investigate and fix if system test fails.

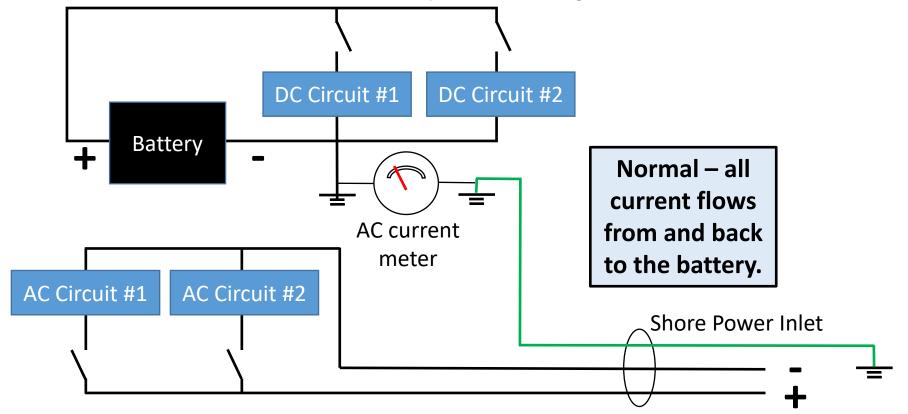
Stray Current Corrosion

- Other stray current avoidance practices:
 - Always use marine grade wiring
 - Keep wiring out of bilge water
 - Butt connectors with heat shrink and adhesive
 - ❖ No wire nuts! No wing nuts! No Solder joints!
 - Clean AC and DC ground system connections
 - Keep AC Neutral separate from AC Grounding

Multi-Boat Stray Current Corrosion

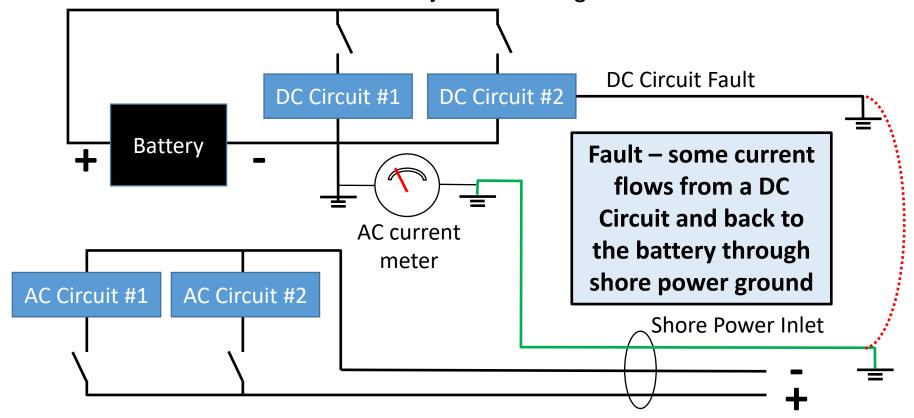
Metal Piling (Ground)

DC Stray Current Leak Sink OC Stray Current Leak Source


Sources of Stray Current Corrosion

- In either DC or AC systems:
 - A short in your boat's wiring system
 - Eg: poorly insulated wire in the bilge
 - Chafed insulation leaking current to ground
 - An improperly wired electrical accessory
- AC motor winding insulation breakdown

Testing for Stray DC Current - USPS


- Disconnect DC Negative bus bar and AC Grounding bus bar from the engine and insert AC current meter between the two grounding wires.
- Set meter to DC amps, turn DC batter switch "on". Reading < 1mA.</p>
- ❖ Activate each circuit individually. All readings < 1mA.</p>

Testing for Stray DC Current - USPS

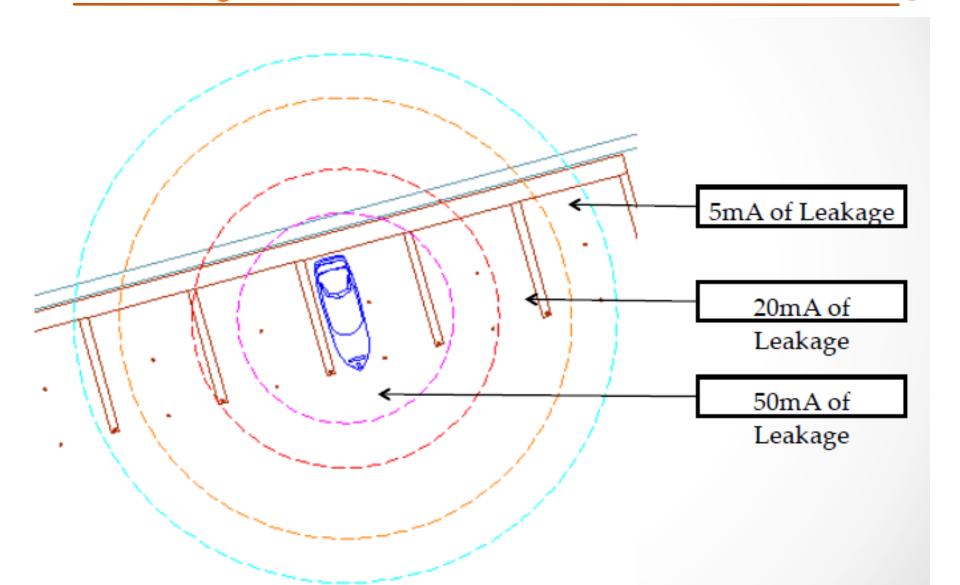
- Disconnect DC Negative bus bar and AC Grounding bus bar from the engine and insert AC current meter between the two grounding wires.
- Set meter to DC amps, turn DC batter switch "on". Reading < 1mA.</p>
- Activate each circuit individually. All readings < 1mA.</p>

Testing for Stray AC Current

- USPS: use the same method as above (not sure)
- Prefer AC Clamp Meter test
 - All current in should come out
 - Zero reading expected
 - ♦ >0.1A = Not OK in fresh water
 - ❖ AC reading = leakage current
 - Activate all boat AC circuits

Testing for Stray Current in Standing Rigging

- Clamp meter test any piece of standing rigging
 - Either AC or DC meter settings
- Clamp meter test the VHF cable to the mast-top antenna
- Clamp meter test the wire bundle leading to and from the mast
 - Should get zero reading


Testing for AC Stray Current

- USPS: use the same method as above (not sure)
- Prefer AC Clamp Meter test
 - All current in should come out
 - Zero reading expected
- >0.1A = Not OK in fresh water
 - ❖ AC reading = leakage current
 - Activate all boat AC circuits

AC Stray Current & Electro-Shock Drowning

AC Stray Current & Electro-Shock Drowning

Current	Effects
1 mA to 8 mA	Tingle, sensation of shock, not painful, muscle control not lost
8 mA to 15 mA	Painful shock, muscle control not lost
15 mA to 20 mA	Pain shock, muscle control is lost, paralysis / inability to swim occurs, labored breathing
50 mA to 100 mA	Ventricular Fibrillation possible
100 mA to 200 mA	Ventricular Fibrillation occurs
200+ mA	Burn marks may appear, chest muscles clamp heart

- Major concern in fresh water
 - Current will seek the lowest resistance path
 - Human body is lower resistance electrical path than fresh water
 - Human body is <u>less</u> conductive than salt water
 - Electro-Shock drowning nearly impossible in salt water, unless direct contact with current leak

Crevice Corrosion

- Crevices can form...
 - Under washers, dirt, gaskets

- In crevices where moisture is trapped
- Especially relevant to stainless steel parts
 - Chain stays, buried "under deck", are vulnerable
- Stainless requires oxygen for corrosion resistance
 - To maintain anti-corrosive chrome oxide layer

Electrical Safety - Fire

- Only 2.5% of Boat US insurance claims
 - One of the leading causes of boat loss
 - Fifth largest cost category often total loss
- Top causes:
 - Off-boat sources
 - Old (>25 years) / chafed / faulty wiring Resistance =
 Improperly installed battery cables
 - ❖ AC electrical components (AC, Microwave, etc)
 - Engine overheating (impeller / cooling water issues)
 - Old outboard engine voltage regulators

Electrical Safety - Fire - Best Practices

Electrical connectors and wiring odds and ends:

- Wing nuts are not good
- Nuts with lock washers are good
- Crimp connectors are good
 - Particularly with heat shrink and sealant
 - Wire nuts are no good
- Welding cable is no good use marine stranded wire
- Tinned marine wire is good the rest is no good solid house wiring is no good
- ❖ Wire runs must be supported every 18 inches why? vibration
- ❖ Bilge pump wires keep connectors out of the bilge water
- Good idea to inventory the entire electrical system
 - What fuses are where, get spares for at least critical equipment

0

QUARTERMASTER YACHT CLUB – Corrosion & Electrical Safety

Electrical Safety - Other Best Practices

- Inspect and clean electrical connections
 - Battery terminals and grounding terminals
- Running DC motors too long can cause heat = fire
 - DC bow thruster and anchor windlass motors
 - Run these motors when the engine is turning the alternator
- Your shore power cord
 - Plug it in BEFORE you turn the power on
 - Turn power off BEFORE you disconnect
 - Keep it out of the water, yes, even the cord
 - If the plug drops into salt water, rinse and dry with fresh water
 - Check cord heat while in operation, particularly in winter
 - Check burn marks around receptacle
 - * Replace the electrical inlet fixture every 5 years

0

QUARTERMASTER YACHT CLUB – Corrosion & Electrical Safety

Corrosion & Electrical Safety - Summary

- Three types of corrosion
 - Galvanic dissimilar metals slow sacrificial anodes
 - Stray Current DC fast / AC slow test / inspect / fix
 - Crevice slow cleaning & direct inspection
- Bonding systems and galvanic isolators or isolation transformers address most corrosion problems
- Proper wiring and inspection cure the rest
 - Perform AC and DC electrical system tests
 - ❖ If your boat leaks electricity get it fixed

QUESTIONS?

References

- http://newboatbuilders.com/pages/electricity14.html
- https://www.westmarine.com/WestAdvisor/Marine-Grounding-Systems
- http://yachtwork.com/report-corrosion.htm
- https://www.claimsjournal.com/news/national/2016/04/12/270026.htm
- http://www.boatus.com/seaworthy/magazine/2013/october/top-tenclaims.asp
- http://www.boatus.com/boattech/articles/marine-corrosion.asp